
Classical Mechanics

Lagrangian and Hamiltonian
Dynamics

Introduction:

This content presents Lagrangian and Hamiltonian dynamics, an advanced formalism for
studying various problems in mechanics. Lagrangian techniques can provide a much cleaner way
of solving some physical systems than Newtonian mechanics, in particular the inclusion of
constraints on the motion. Lagrangian techniques allow postulation of Hamilton’s Principle of
Least Action, which can be considered an alternative to Newton’s second law as the basis of
mechanics. The Hamiltonian formalism is introduced, which is useful for proving various
important formal theorems in mechanics and, historically, was the starting point for quantum
mechanics.

1.1 Degrees of Freedom, Constraints, and Generalized Coordinates

Degrees of Freedom
Obviously, a system of M point particles that are unconstrained in any way has 3M degrees of
freedom.
There is freedom, of course, in how we specify the degrees of freedom;
(i) Choice of origin
(ii) Coordinate system: Cartesian, cylindrical, spherical, etc.
(iii) Center-of-mass vs. individual particles: {⃗ } or {⃗ , ⃗ = ⃗ − ⃗ }
But, the number of degrees of freedom is always the same; e.g., in the center-of-mass system, the
constraint ∑ ⃗ = 0 applies, ensuring that {⃗ } and {⃗ ,⃗ } have same number of degrees of
freedom.
The motion of such a system is completely specified by knowing the dependence of the available
degrees of freedom on time.

Example 1:
In the elliptical wire example, there are a priori 3 degrees of freedom, the 3 spatial coordinates of
the point particle. The constraints reduce this to one degree of freedom, as no motion in y is
allowed and the motions in z and x are related. The loss of the y degree of freedom is easily
accounted for in our Cartesian coordinate system; effectively, a 2D Cartesian system in x and z
will suffice. But the relation between x and z is a constraint that cannot be trivially
accommodated by dropping another Cartesian coordinate.

Example 2:
In the Atwood’s machine example, there are a priori 2 degrees of freedom; the z coordinates of
the two blocks. (We ignore the x and y degrees of freedom because the problem is inherently 1-



dimensional.) The inextensible rope connecting the two masses reduces this to one degree of
freedom because, when one mass moves by a certain amount, the other one must move by the
opposite amount.

Constraints
Constraints may reduce the number of degrees of freedom; e.g., particle moving on a table, rigid
body, etc.
Holonomic constraints are those that can be expressed in the form

f (⃗ , ⃗ , . . . , t) = 0
For example, restricting a point particle to move on the surface of a table is the holonomic
constraint z− z0 = 0 where z0 is a constant. A rigid body satisfies the holonomic set of constraints

|⃗ − ⃗ | − cij = 0 (i)
where cij is a set of constants satisfying cij = cji > 0 for all particle pairs i, j.

There are three kinds of nonholonomic constraints:
(i) Nonintegrable or history-dependent constraints. These are constraints that are not fully
defined until the full solution of the equations of motion is known. Equivalently, they are certain
types of constraints involving velocities.
(ii) Inequality constraints; e.g., particles required to stay inside a box, particle sitting on a sphere
but allowed to roll off.
(iii) Problems involving frictional forces.
Holonomic constraints may be divided into rheonomic (“running law”) and scleronomic (“rigid
law”) depending on whether time appears explicitly in the constraints:
rheonomic: f({⃗ }, t) = 0
scleronomic: f({⃗ }) = 0

1.2 Virtual Displacement, Virtual Work, and Generalized Forces

Virtual Displacement

We define a virtual displacement {δ⃗ } as an infinitesimal displacement of the system
coordinates {⃗ } that satisfies the following criteria:
(i) The displacement satisfies the constraint equations, but may make use of any remaining
unconstrained degrees of freedom.
(ii) The time is held fixed during the displacement.
(iii) The generalized velocities {̇} are held fixed during the displacement.

A virtual displacement can be represented in terms of position coordinates or generalized
coordinates. The advantage of generalized coordinates, of course, is that they automatically
respect the constraints. An arbitrary set of displacements {δqk} can qualify as a virtual
displacement if conditions (ii) and (iii) are additionally applied, but an arbitrary set of
displacements { δ⃗ } may or may not qualify as a virtual displacement depending on whether the
displacements obey the constraints. All three conditions will become clearer in the examples.
Explicitly, the relation between infinitesimal displacements of generalized coordinates and
virtual displacements of the position coordinates is



δ⃗ = ∑
⃗


 δqk (ii)

This expression has content: there are fewer {qk} than {⃗ }, so the fact that δ⃗ can be expressed
only in terms of the {qk} reflects the fact that the virtual displacement respects the constraints.
One can put in any values of the {δqk} and obtain a virtual displacement, but not every possible
set of {δ⃗ } can be written in the above way.

Virtual Work

We can define virtual work as the work that would be done on the system by the forces acting on
the system as the system undergoes the virtual displacement {δ⃗ }:

δW = ∑ ⃗ . δ⃗ (iii)

where ⃗ is the jth force acting on the coordinate of the ith particle ⃗ .

Generalized Force

Our discussion of generalized coordinates essentially was an effort to make use of the constraints
to eliminate the degrees of freedom in our system that have no dynamics. Similarly, the
constraint forces, once they have been taken account of by transforming to the generalized
coordinates, would seem to be irrelevant.

1.3 d’Alembert’s Principle and the Generalized Equation of Motion

d’Alembert’s Principle

Definition of virtual work is
δW = ∑ ⃗ . δ⃗ (iv)

where the sum includes all (constraint and non-constraint) forces. Assuming position coordinates
are in an inertial frame (but not necessarily our generalized coordinates), Newton’s second law
tells us ∑ ⃗ = ⃗ : the sum of all the forces acting on a particle give the rate of change of its
momentum. Then we can rewrite δW:

δW = ∑ ∑ ⃗ . δ⃗ = ∑ ̇ . δ⃗ (v)
But, we found earlier that we could write the virtual work as a sum over only non-constraint
forces,

δW = ∑ ⃗
()

 . δ⃗ (vi)

Thus, we can derive the relation,

∑ ∑ ⃗
()

− ̇  . δ⃗ = 0 (vii)

The above equation is referred to as d’Alembert’s principle. Its content is that the rate of change
of momentum is determined only by the non-constraint forces. In this form, it is not much use,
but the conclusion that the rate of change of momentum is determined only by non-constraint
forces is an important physical statement.



We can use d’Alembert’s principle to relate generalized forces to the rate of change of the
momenta:

∑  =  = ∑ ̇ .  = ∑ ̇.



, (viii)

Here, {δ⃗ } and {δqk} are mutually independent. Therefore, we may conclude that equality holds
for each term of the sum separately (Equation vii), providing a different version of d’Alembert’s
principle:

∑ ⃗
()

.



=  = ∑ ̇.




 (ix)

This is now a very important statement: the generalized force for the kth generalized coordinate,
which can be calculated from the non-constraint forces only, is related to a particular weighted
sum of momentum time derivatives (the weights being the partial derivatives of the position
coordinates with respect to the generalized coordinates). Effectively, we have an analogue of
Newton’s second law, but including only the non-constraint forces.

Generalized Equation of Motion

Now we perform the manipulation needed to make d’Alembert’s principle useful. We know from
Newtonian mechanics that work is related to kinetic energy, so it is natural to expect the virtual
work due to a differential displacement {δ⃗ } to be related to some sort of small change in kinetic
energy. We first begin with a formal definition of kinetic energy:

T = ∑




̇
.  .  = T ({}, {̇}, t)

T can be obtained by first writing T in terms of position velocities {̇} and then using the
definition of the position coordinates in terms of generalized coordinates to rewrite T as a
function of the generalized coordinates and velocities. T may depend on all the generalized
coordinates and velocities and on time because the {} depend on the generalized coordinates
and time and a time derivative is being taken, which may introduce dependence on the
generalized velocities (via the chain rule, as seen earlier). The partial derivatives of T are




= ∑  . ̇.

̇


= ∑  .

̇




̇
= ∑  . ̇.

̇


= ∑  .





where in the last step we have made use of dot cancellation because the constraints are assumed
to be holonomic.
Now, we have ⃗ floating around but we need ̇. The natural thing is then to take a time

derivative. We do this to



(instead of



̇
) because we want to avoid second order time

derivatives if we are to obtain something algebraically similar to the right side of d’Alembert’s
principle. We find






̇
 = ∑ ̇ .




+ ∑  .




(



)

Or,






̇
 = ∑ ̇ .




+





So, ∑ ̇ .



=







̇
 -




(x)

Recalling d’Alembert’s principle (Equation ix), we may rewrite the above:

∑ ⃗
()

.



=  = =







̇
 −




(xi)



This is the generalized equation of motion. The left side is completely determined by the non-
constraint forces and the constraint equations. The right side is just derivatives of the kinetic
energy with respect to the generalized coordinates and velocities. Thus, we obtain a differential
equation for the motion in the generalized coordinates.

1.4 The Lagrangian and the Euler-Lagrange Equations
For conservative non-constraint forces, we can obtain a slightly more compact form of the
generalized equation of motion, known as the Euler-Lagrange equations.

Generalized Conservative Forces
Now let us specialize to non-constraint forces which are conservative; i.e.,

⃗
()
= −∇⃗ ({⃗ })

where ∇⃗  indicates the gradient with respect to ⃗ . Whether the constraint forces are conservative
is irrelevant; we will only explicitly need the potential for the non-constraint forces. U is
assumed to be a function only of the coordinate positions; there is no explicit dependence on
time or on velocities, ∂U/∂t = 0 and ∂U/∂̇ = 0.
Let us use this expression of generalized force

Fk = ∑ ⃗
()

.



= − ∇⃗ ({⃗ }).




= −




({⃗ }, ) (xii)

In the last step we make use of the holonomic constraints to rewrite U as a function of the {ql}
and possibly t and realize that the previous line is just the partial derivative of U with respect to
qk.
Thus, rather than determining the equation of motion by calculating the generalized force from
the non-constraint forces and the coordinate transformation relations, we can rewrite the
potential energy as a function of the generalized coordinates and calculate the generalized force
by gradients thereof.

The Euler-Lagrange Equations
We may rewrite the generalized equation of motion using the above relation between generalized
force and gradient of the potential energy as

−



=







̇
 −




(xiii)

Define the Lagrangian
L = T − U

Since we have assumed holonomic constraints, we have that ∂U/∂̇ = 0. This lets us replace d/dt
(∂T/∂̇) with d/dt (∂L/∂̇), giving






̇
 −




= 0 (xiv)

This is the Euler-Lagrange equation.

1.5 The Hamiltonian
We seek a conserved quantity, one whose total time derivative vanishes. We can construct one
from the Lagrangian; it is called the Hamiltonian and has the form

H = ∑ ̇ .



−  (xv)

The total time derivative of the Hamiltonian is
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̇
+̇









̇
 −






We can use the Euler-Lagrange equation to rewrite the middle term, which gives



 =̈





̇
+̇






−





The first two terms are most of the total derivative of L; one is left only with




 = −




(xvi)

Thus, if time does not explicitly appear in the Lagrangian, the Hamiltonian is completely
conserved. If the constraints are scleronomic (the potential is implicitly assumed to be
conservative because we are able to calculate a Lagrangian), then time will not appear explicitly
and H will definitely be conserved. It can be shown that H is the total energy of the system, H =
T + U. For rheonomic constraints, H may still be conserved, but may not be the energy. We will
investigate these conservation laws in more detail later.

1.6 Cyclic Coordinates and Canonical Momenta

If the Lagrangian contains ̇ but not qk, we can easily see from the Euler-Lagrange equation that
the behavior of that coordinate is trivial:







̇
 = 0

Which implies; 


̇
 = p

is constant or conserved and is termed the canonical momentum conjugate to qk or the
canonically conjugate momentum. The coordinate qk is termed ignorable or cyclic. Once the
value of pk is specified by initial conditions, it does not change. In simple cases, the canonical
momentum is simply a constant times the corresponding generalized velocity, indicating that the
velocity in that coordinate is fixed and the coordinate evolves linearly in time.

1.7 The Principle of Least Action and the Euler-Lagrange Equation
The Euler-Lagrange equations can be derived using d’Alembert’s principle. The form of the
Euler equation suggests that if we take F = L, we will recover the Euler-Lagrange equations.
Thus, we define the action,

S = ∫  ((), ̇(), )




and we require that the physical path satisfy the Principle of Least Action, that
δS = 0

for the physical path. This is also known as Hamilton’s Principle because he was the first one to
suggest it as a general physical principle. Plugging in for F = L in the Euler equation gives us the
Euler-Lagrange equation,




−







̇
 = 0 (xvii)


